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Abstract - We investigate accuracy of existing 2D
pseudospectral and k-space formulations for
simulating acoustic propagation in tissue or model
scattering media. They are intended to provide
insight into tissue-ultrasound interaction and a “test
bed” for aberration correction schemes in medical
imaging.   Both methods employ FFT’s to evaluate
spatial derivatives to high accuracy on coarse grids.
The primary difference lies in the approach to time
integration. Scattering in large-scale, 2D,
inhomogeneous media is included. We compare
simulations against analytical solutions to illustrate
spatial and temporal discretization required for
acceptable solutions.

INTRODUCTION

   The medium is represented by a uniform Cartesian
grid where pressure/stiffness and velocity/density
are unknowns/parameters at discrete points.
Spectral operators in space enable accuracy and
computational efficiency in very large models.
However, inhomogeneities are often represented as
piecewise constant from node to node, rather than
smooth.  The resulting stairstep can produce
spurious diffractions at edges/corners, inaccurate
reflections and transmissions at interfaces and local
Gibbs phenomena, by approximating derivatives at
a material discontinuity.  Thus, the efficiency
permitted by coarse spectral grids is compromised
by the need to resolve interface derivatives.
   For example, scattering by a soft cylinder requires
only two nodes per wavelength inside and outside
the cylinder for accurate propagation, but
significantly more nodes per wavelength are
necessary to reduce interface artifacts.  Interface
artifacts  are  quantified  for  a  single  interface,  1D

multilayer models, and cylindrical scatterers.
Abdominal wall cross sections with coarse and fine-
scale inhomogenities are used to explore fidelity of
wave propagation versus nodes per wavelength and
tissue characteristic lengths.  We show that the
existing tools are useable in 2D.
   The pseudospectral method is implemented in the
SpectralFlex code.  Kbench implements the k-space
method.

PSEUDOSPECTRAL AND K-SPACE METHODS

The pseudospectral and k-space methods were
formulated to provide efficient high-accuracy
solutions to long range wave propagation problems.
In fact, they debuted during the same year [1,2]. We
briefly describe the two methods as implemented in
[3,4], highlighting the major similarities and
differences.
   Both use FFT’s to evaluate spatial derivatives to
high accuracy on coarse grids.  The primary
difference lies in their respective approaches to time
integration.  Note that coarse spatial grids provide
the primary incentive for FFT based (or any high
order) method. The computational burden is linear
in the number of timesteps per cycle, for both 2D
and 3D.  Including the timestep, computational
burden is proportional to the number of Points Per
Wave (PPW)3 in 2D or (PPW)4 in 3D.
   SpectralFlex adopts a 4th order staggered Adams
Bashforth ABS4 time integrator [5].  Among
general purpose integrators, this is close to optimal
for the current applications - 2-3 digits of accuracy
for a wave propagating several hundred wavelengths
on the coarsest possible grid.  The stability limit for
ABS4 in 2D is CFL = 0.3.  The CFL number is
defined as: CFL = ∆t/(∆x/c), where ∆t is the
timestep, c is the wavespeed and ∆x is the cell size.
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    Accuracy frequently requires a smaller timestep,
say CFL = 0.1.  Kbench implements a time
integrator in k-space based on the exact solution for
waves propagating in a homogeneous medium [4].
It outperforms the general purpose ABS4 time
integrator for weak scatterers in a homogeneous
linear acoustic medium. ABS4 becomes more
efficient when the scattering objects have a larger
impedance contrast.

LONG RANGE PROPAGATION

To illustrate the advantages of the FFT based
approach for long range propagation, we propagate
a 2.5 MHz pulse 200 wavelengths through water
using both SpectralFlex and PZFlex, a finite
element code that is second order accurate in both
space and time. The center frequency is 2.5 MHz,
but spectral content is observable up to 5 MHz.
Thus, 4 PPW at 2.5 MHz is the minimum sampling
capable of resolving the pulse.
   Figure 1 compares exact, PZFlex and SpectralFlex
solutions. SpectralFlex used 4 PPW at CFL = 0.1,
whereas PZFlex used 20 PPW at CFL = 0.8.  These
discretizations in time and space are typical of those
that would be used in real problems.  The
SpectralFlex signal looks good and can be made
better by reducing the timestep.  The PZFlex signal
is delayed in time and badly dispersed.  A much
finer grid is required to achieve reasonable
accuracy.  Note that at CFL = 1., PZFlex becomes a
characteristic method, and produces exact results,
even at 2 PPW.  Unfortunately, this only works for
1D linear problems.
   Kbench produces exact results for this example
because the time integrator is based on the exact
solution for a homogeneous medium.

DISCONTINUITIES

Spectral methods compute highly accurate spatial
derivatives of smooth fields.  Thus, in homogeneous
regions, 2 cells per minimum wavelength (ie,
highest spatial frequency) suffice.   However, at
material interfaces both the pressure and velocity
fields should exhibit slope discontinuities as given
by (1), where n denotes the normal direction and the
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superscript defines the + or – side of the interface.
The velocity field likewise exhibits slope
discontinuities at interfaces.
   Spectral methods enforce smoothness,
approximating the jumps in normal derivatives with
steep gradients over a few cells.  This
approximation is quite good at 10-20 cells per
wavelength, but less accurate at 2 cells per
wavelength.  For a staggered grid, as in
SpectralFlex, the material interfaces coincide with
velocity nodes, so we average the density at these
interface points.  On a regular grid, all the nodes lie
away from interfaces, so no averaging is necessary,
but the accuracy is even worse than for the
staggered grid.
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Figure 1.  Long range pulse propagation through
water.

1D versus exact solutions
Table 1 summarizes material properties used for the
1D benchmarks.  Figure 2 illustrates the reflection/
transmission of a normally incident pulse at a
water/fat interface as modeled by SpectralFlex. To
plotting accuracy, the transmitted signals appear
exact (because it has much larger amplitude than the
reflected wave).  However, the error in the reflected
signal is readily apparent at 4 PPW, and barely
visible at 6 PPW.
   Figure 3 shows results for a water /bone interface.
In this case, errors are visible in both the reflected
and transmitted signals at 4 PPW. In both codes, the
most pathological case is varying density/constant
stiffness. Fortunately, most tissues have a higher
contrast in stiffness than density [6], so this worst
case is seldom encountered. As shown in Fig. 4
(density=1000, 928 kg/m3) errors in the reflected
wave are visible even at 12 PPW.
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Table 1 – Material Properties for 1-D benchmarks
Material Density [kg/m3] Wavespeed [m/sec]
Water 1000. 1500.
Fat 928. 1427.
Conn 1100. 1537.
Musl 1041. 1571.
Livr 1050. 1577.

Figure 2.  Reflected pulse at a water/fat interface.
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Figure 3.  Reflected pulse at a water/bone interface.
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Figure 4. Reflected pulse from worst case interface.

   The next benchmark examines propagation
through a 1-D approximation of an abdominal cross
section.  Material parameters are again given in
Table 1.  Slight errors in the transmitted wave are
apparent at 4 PPW (Fig. 5), but not at 8 PPW.
Reflected signals (not shown) are similar. Figure 6

illustrates the effect of coarse non-conforming grids.
At 4.1 PPW, cell boundaries are misaligned with
actual material interfaces by up to ½ cell. This is, of
course, the case for any real model with
discontinuous material properties. Properties are
assigned based on the center of the cell.  The errors
introduced by this sampling dwarf all others.  More
will be said about this in a later section.
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Figure 5.  Pulse transmitted through 1-D abdominal
wall model.
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Figure 6. Pulse transmitted through 1-D
approximation of abdominal wall.  Non-conforming
grid.

Scattering by cylinders
In addition to the numerical errors at interfaces,
approximations are introduced by the stair-step
representation of curved surfaces.  To quantify these
approximations, we consider 3 mm radius fat and
bone cylinders immersed in water and insonified by
the usual 2.5 MHz pulse. We compute the difference
between exact and numerical signals for each
timestep at 128 locations at 6 mm radius, and equal
spacing in theta. We use the L2 norm of this matrix
as an error metric.   Figure 7a shows the L2 error vs
PPW for kbench and SpectralFlex at CFL = 0.2.
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The curves are similar, though kbench is slightly
more accurate.  For the larger contrast bone case in
Figure 7b, similar trends are evident, but in this case
SpectralFlex is more accurate. The error is tending
to zero as the PPW increases.  The rate of
convergence is not quite quadratic. For context, Fig.
12 shows waveforms for L2 error near 0.01.

Table 2 - Material Properties for Cylinders
Material Wavespeed [m/sec] Density [kg/m3]
Water 1524. 993.
Fat 1478. 950.
Bone 3540. 1990.

Figure 7c illustrates that at low CFL, the error due
to time integration tends to zero.  For this problem,
kbench permits reasonable accuracy at roughly
double the SpectralFlex timestep. For the bone
cylinder, the stability limit of SpectralFlex is 0.15
(0.3 in the bone) , and kbench can go up to 0.2.

kbench
SpectralFlex
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Figure 7.  Cylinder benchmarks.  Convergence with
increasing discretization.

connective
tissue

muscle

fat

water

materials

Figure 8.  Abdominal wall model.

Tissue examples
Figure 8 shows an abdominal wall cross section
[7,8].  This model is insonified by a 4.35 MHz plane
wave pulse.  Figure 9 displays typical reflected and
transmitted signals computed by SpectralFlex at 4, 8
and 12 PPW. The grids were defined such that
material boundaries always lie in exactly the same
place.  Again, it is confirmed that even the coarse 4
PPW model produces fairly accurate results.
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Figure 9. Transmitted pulse from Abdominal wall
model.

INTERFACE TREATMENTS

Given that the largest numerical errors in the FFT
based methods stem from material interfaces, we
look at several interface treatments for reducing
those errors.

Jump conditions
One possible method for improving the accuracy at
interfaces is to split the solution into smooth and
non-smooth parts, and apply the spectral method
only to the smooth part.  The idea is to introduce
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local corrections at material interfaces that enforce
the jump conditions exactly.  E.g., construct low
order polynomials over the cells adjacent to the
interface that have zero value and zero slope 1 cell
away, and, when added to the continuous part
satisfy the jump condition (1) at the interface.
Obviously, the correction is not required to be local,
but if it covers more than 1 cell, the algorithm will
become much more complicated for multiple
interfaces.  LaVeque [9] discusses such an approach
applied to finite difference models.
     Figure 10 compares reflected and transmitted
signals for coarse models of an interface with and
without the jump correction for interface velocity.
This example isolates the effects of density changes
in that only the density is discontinuous.  The bulk
modulus is continuous.  The correction term
improves the computed result, but not to the level of
a homogeneous material.  A similar correction could
be applied to the discontinuity in the velocity
gradients.  However, it will have a weaker effect on
the staggered grid since the leading coefficients are
already continuous.
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Figure 10. Jump treatment applied to interfaces.

Smoothing (Bandlimitation)
Another approach to improving accuracy at
discontinuities is to smooth or bandlimit the model
before sampling.  This removes unresolvable high
spatial frequencies from the model itself.  We found
that perfect bandlimitation reduced computed
signals too much, but a “halfband” filter improves
accuracy.  The halfband filter is smooth with an
amplitude of 0.5 at half the sampling frequency.
Figure 11 shows direct and halfband filtered kbench
models of a 3 mm cylinder using the same number
of PPW.  The corresponding pressure fields are
plotted using a 60 dB bipolar log scale.

a) Unsmoothed b) Halfband Filtered

Figure 11. Direct sampled & bandlimited cylinders.
Models and pressure, 60 dB bipolar log scale.

The staircase representation of the cylinder
generates diffracted signals at each corner in 11a,
but these have disappeared in 11b.   Figure 12
shows selected waveforms from the direct and
halfband sampled models.  The late time diffractions
have been removed, and overall L2 error was
reduced from 0.0155 to 0.0105.   This exercise
demonstrates that smoothing can be useful.
However, there are some practical complications.
The current procedure computes the smoothed
object as the inverse transform of the object’s
analytical spectrum multiplied by the filter, and is
thus defined only for objects with a known
analytical spectrum.  The extension to more general
models defined on a pixel by pixel level has not yet
been demonstrated.   Also, continuous variations of
material properties produce a large number of
distinct materials.  In the limit, each cell of the
model has different properties.  For the purely
acoustic case, this presents little difficulty, but when
material nonlinearity or viscoacoustic damping is
added, the complexity intensifies. E.g., for each
wavespeed/damping set, an optimization problem
must be solved to compute the appropriate
relaxation constants, and these constants must be
stored.
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Figure 12. Backscattered signals from direct (top)
and bandlimited (bottom) models.

   Note that this procedure adds information to the
model compared to the unsmoothed case. Because
smoothing is applied to the analytical cylinder, the
continuous variation of material constants provides
a richer set of parameters than is available in the
unsmoothed representation.  As long as the model is
known to higher resolution than the grid,
information will be added.  It is an interesting
question whether smoothing would be beneficial on
a grid finer than the pixel by pixel model definition.
For example, the UOR tissue cross sections [7,8] are
the most detailed models we know of.  These are
represented as piecewise constant with a pixel size
0.085 mm (about 7 PPW for a 2.5 MHz pulse).   For
a 5 MHz pulse, the coarsest grid would have finer
resolution than the model.
  Volume averaging of material constants has also
been shown effective [10].  This adds additional
information compared to the unsmoothed case, and
the correction is more local than smoothing.
However, the practical difficulties are the same.
   As a last resort, increased discretization (brute
force) will always converge to an accurate solution.
This is a practical solution in 2D, as the above tissue
examples indicate.

CONCLUSIONS

Model parameterization is a critical issue and puts
all the above results in practical perspective. As
shown above, differences in material constants or
interface locations cause much larger differences in
reflected/transmitted signals than any numerical
errors in the FFT based methods. For gaining
insight, or as a test-bed for aberration correction
schemes, a 4 PPW model is sufficient at frequencies
of 2.5 MHz or greater. Fine grids or cell-by-cell
representation of material properties are needed only
for more accurate rendition of model geometry.
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